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I. INTRODUCTION 

Presently there is much interest in relativistic 

nucleus-nucleus collisions because of the prediction by quantum 

chromodynamics(QCD) that under conditions of sufficiently high 

energy density a new state of nuclear matter, the quark gluon 

plasma(QGP), can be formed . The plasma may be observed in real 1 

time by detecting weakly interacting particles such as photons or 

lepton pairs that emanate from the plasma. Alternatively, it is 

possible to search for a characteristic signal in the angular 

distributions of secondary particles emitted in the collision. The 

latter approach is the only one that can be used when the secondary 

particles are observed in passive detectors such as balloon-borne 

emulsion chambers . 2 

Recent data from accelerator-based heavy ion experiments 

indicate that compressional nuclear forces are observable in 

nucleus-nucleus col l is ions at high energy3 9 4 .  During the collision 

nuclear matter is assumed to behave like a fluid whose 

motion is governed by the equations of hydrodynamics. Some 

fraction of the incident kinetic energy is transformed into 

1 



potential or compressional energy. The fact that the nuclear 

matter is made up of neutrons and protons is ignored except in the 

final stages of the collision when the matter has expanded and 

cooled, A fraction of the particles emitted in the collision may 

emerge moving in a preferred allowing for the 

observation of the "footprint" of the QGP production in the angular 

distribution of the secondary particles. 

In this paper we report on the application of statistical 

analyses t o  the angular distributions of secondary particles 

emitted in relativistic nucleus-nucleus collisions. In particular, 

we have examined a set of JACEE-3 events for the presence of 

correlations in the azimuthal distributions of the secondary 

particles. Two approaches In the first case, 

we test for asymmetry in the entire data set of events using the 

method of composite unit vectors . Secondly, chisquare 

goodness-of-fit tests and discrete Fourier transform analysis are 

used to examine event-by-event for correlations between particle 

intensity and azimuthal angle. Our analysis is further extended to 

include searches for evidences of non-statistical fluctuations in 

the pseudorapidity distributions of single events. It is expected 

that the investigation of non-statistical fluctuations in single 

events will be most productive for high multiplicity collisions 

since it is assumed that nucleus-nucleus collisions are made up of 

many incoherent elementary processes 

have been used here. 

7-9 

10-12 
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11. METHOD OF COMPOSITE UNIT VECTORS 

The method of composite unit vectors permits one to test for 

azimuthal asymmetry in the distribution of an entire data set of 

events. A summary of the reactions included in this set and the 

range of energies covered is provided in Table I. In the method, 

the direction of the emitted particle is projected onto the 

azimuthal plane and a unit vector, r is constructed from this 

projection. A s  shown in figure l., Ri describes the emitted 

particle's direction and RiSINgi is the magnitude of its projection 

onto the azimuthal plane. The unit vector in the azimuthal plane 

A 

i' 
A 

simply becomes 

A A A 

r = (COSb,) i + (SINBi) j i 
For each event we construct a quantity, w, given by 

i w =  i = l,n , (2) 
n 

where n is the number of 

associated with the ith emitted,particle. 

secondaries and Oi is the azimuthal angle 
We note that events with 

a small degree of asymmetry will have w values near or equal to 

zero If it is and that w will increase with increasing asymmetry. 

assumed 

angle @, 

that the emitted particles are randomly distributed in the 

the situation is mathematically equivalent to the problem 

of calculating the probability distribution associated with n 

frequencies of unit amplitude each possessing a random phase. The 

3 



Table  I. Summary of r e a c t i o n s  treated i n  t h i s  work. (a)The 
energy €or  a t  least  one event  i n  t h i s  group was n o t  
a v a i l a b l e  a t  t h e  time of t h i s  a n a l y s i s .  

RANGE OF E NE RGY RANGE 
REACTION MULTIPLICITIES (GeV/nucleon) 
N, ---> C 28 56 

1 

Fe ---> Pb 

F2 ---> Ag 

Fe ---> 0 

Fe ---> C 

Fe ---> N 

C r  ---> Pb 

C r  ---> C 

v ---> 0 

T i  ---> AgBr 

T i  ---> 0 

T i  ---> C 

Ca ---> Ag 

Ca ---> C 

A r  ---> Pb 

A r  ---> C 

s ---> c 
X e  ---> Ag 

H e  ---> C 

21 - 165 

26 - 69 

11 - 132 

8 - 105 

12 

6 5  - 94 

23 - 113 

14 

20 - 283 

1 5  

6 - 39 

108 

16 

5 

2 5  

21  

20 

9 - 59 

28 - 48(a) 

2 5  - 52(a) 

2 5  - 55 

22 - 51(a) 

28 

2 5  - 48 

23  - 45 

27 

24 - 41 

26 

32 - 61(a) 

6 1  

3 5  

2 5  

61 

3 5  

55 

61  
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I -. 
R i  = Emitted Particle 

Di rcct i on 

Incident Particle 
Direction 

Figure 1. Coordinate system diagram illustrating the composite 
unit vector method. 
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resulting probability distribution, when expressed in terms of 

parameter w, is approximated by the exponential form , 

the 
13 

P(w)dw - exp(-w)dw. (3 )  

It therefore should be possible to obtain a measure of the 

azimuthal asymmetry in the entire data set by constructing the 

distribution of events in w and comparing its shape to the 

exponential. Deviation from this exponential behavior may then be 

interpreted as an indication of anisotropy in the data. 

The distribution in w for the JACEE-3 events analyzed is shown 

in figure 2. The solid curve in the plot is the renormalized 

exponential function. The dashed line is the result of of a least 

squares fit to a single exponential, 

n = Aexp(-Bw) , ( 4 )  

where A = 24.5694 and B = 0.84962. In general, the agreement 

between the experimental distribution and the theoretical curves is 

good. This result is not unusual in that purely statistical 

fluctuations that occur event to event will be lost when averaging 

over a sufficiently large set events. It is therefore important 

that single events be investigated for evidences of non-statistical 

fluctuation. In the next section of this report we present a method 

for the analysis of structure observed in the azimuthal 

distributions of single events. 

6 
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Figure 2 .  Asymmetry distribution plot for  the 63 JACEE-3 events. 
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111. SINGLE EVENT ANALYSIS 

A .  Chisquare Tests 

In order to examine more closely the question of nonuniformity 

in the azimuthal angular distributions, each distribution was 

subjected to a null hypothesis test wherein the probability that 

its intensity pattern could be attributed to chance occurrence was 

determined. In effect, a least squares fit of the data to the 

average of the distribution was performed and a chisquare value 

given by 

was evaluated for each event14. In the present case x2 corresponds 
to the sum of the squares of the residuals with each residual 

weighted by its fractional standard deviation. The integral 

chisquare probability for each event. 

It represents the probability that a randomly chosen set of N data 

points will yield a value of x 

15 , Pr , was also determined 

2 as large as or larger when compared 

with the parent distribution. An assumption that is inherent to 

this part of the analysis is that the experimental x values are 2 

characterized by a chisquare distribution of degrees of freedom. 

This will indeed be the case if the xi’s are independent and 

identically distributed variables each following a normal 

distribution with a mean of zero and unit variance. The exercise 

of evaluating this assumption is complicated by the relatively 

8 



small 

generally correspond to different reactions rather than a collection 

of events from the same reaction. Further, variations in the 

multiplicity among events lead to variations in the values 

associated with the individual angular distributions. Thus, the 
2 events that fall within a given bin of the experimental x 

distribution will in general have a range of values. With these 

considerations in mind we have taken the following approach to 

obtaining a comparison between theory and experiment. 

number of events in the sample and the fact that the events 

The general form of the chisquare distribution is given by 

where vis the number of degrees of freedom associated with the 

distribution. For each bin in the experimental x distribution we 

construct an average probability given by 

2 

where 

N 

2 N = number of xi values that fall within the kth bin, 
k = index specifying the bin, 

xf = chisquare value obtained for the ith angular 

= number of degrees of freedom for the ith angular 

distribution 
and 

distribution. vi 

9 



The pk values are normalized to satisfy the criterion, 

2 Nb is the number of bins in the experimental xi distribution and 
NE is the total number of events in the data set. The comparison 

between the above theory and the experiment is provided in figure 

3 .  The shape of the two distributions is seen to be in good 

qualitative agreement thereby supporting 'the assumption upon which 

the integral probabilities are based. 

B. Discrete Fourier Transform Analysis of Azimuthal Distributions 

Three events with relatively high statistics were chosen €or 

discrete Fourier transform (DFT) analy~is'~,~'. The events are 

identified in Table 11, and their distributions are shown in 

figures 4a-4c and 5a-5c. It should be noted that the number of 

bins in set 4 is based on an optimization of the sensitivity of 

the null hypothesis test. The criterion €or the Four€er analysis 

is that the number of bins be an integral power of two. The exact 

discrete transform was determined €or each distribution according 

to the relationship 

where Nb = number of bins in the distribution, 

Na, = average number of particles per b€n, 

k = index over which the sum is performed, 

Ak = calculated Fourier amplitudes, 

1, = calculated Fourier phases, and 

Ni = predicted value of the number of counts in the bin. 

10 
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Figure 3. Comparison o f  experimental and theoretical x2 distributions 
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Table 11. Reactions for which discrete Fourier transform analysis 
was performed on the azimuthal angular distribution. 

ENERGY (1-p ) 
EVENT REACTION (GeV/nucleon) N expx . 
FE70642 Ti ---> AgBr 41 283 0.978406 

FE6869B Fe ---> 3 55 132 0.999 9 53 

FE61927 Fe ---> AgBr 24 16 5 0.297630 1 

The quantity uti is the angle at which the Ni are calculated. The 

complete results of the Fourier analysis are given in Appendix 

A. Although eight Fourier amplitudes were calculated by the 

procedure, each is not necessarily of equal importance to the 

reconstruction of the original distribution. In order to judge 

the relative importance of a given amplitude, an integral 

each. chisquare probability, P , has been calculated f o r  
X 

The P is given by 
X 

2 

where 

and k refers to a single ampli-ude in equation (9). A rding 

to equation (10) large values of P indicate a poor fit 

and small values indicate a good fit. This approach per- 

mits one to easily determine whether the character of a given 

18 



distribution is dominated by a subset of amplitudes. With this 

idea in mind, the solid curves shown in figures 5a-5c were drawn t o  

show those amplitudes that have the smallest probabilities of 

chance occurrence. Of the three events, FE6869B appears t o  be the 

only one well characterized by two slowly varying components18. The 

distribution for event FE70642 on the other hand is best 

characterized by a rapidly varying amplitude which is more typical 

of noise. 

C. Fluctuation Analysis of the Pseudorapidity Distributions 

We have used the method of Takagi19 to test for nonstatistical 

fluctuations in the pseudorapidity distributions of individual 

events. This method involves several steps that are only 

summarized here. First, a smooth function, fs(T) that reflects the 
average properties of the distribution is determined by least 

squares fit of the experimental distribution to a superposition of 

Chebyshef polynomials . The number of terms in the sum is 20 

governed by the expansion that minimizes the chisquare value for 

the fit. Thus, we make the definition 

k= 1 

If there are L bins in the histogram of the distribution, 

is the Chebyshef polynomial of degree k and f(T) is 

19 



The total vertical length, known for the range 

V, of the experimental histogram is then used as a measure of the 
Tmax 2r) 2 ?mine 

fluctuations in the distribution, i.e., 

L+l 
F 

i=l 

where f(To) = f('T)L+l)zO. The pseudorapidity distribution is then 

simulated by a Monte Carlo procedure. In the present case the 

method of Von Neumann rejection was used to produce the 21 

pseudorapidity distributions for many tt equivalent" events. For 

each simulation, the number of secondary particles was held fixed 

to the experimentally observed value. Points within the range 

17,d7)2Tmin were sampled according to fs(T). The Monte Carlo 

data obtained should contain distributions of purely statistical 

fluctuations that can be compared with the fluctuations in the real 

events. 

Two examples of smooth fits, fs(7)), are provided in figures 6 

For comparison, and 7 together with their empirical distributions. 

the distributions resulting from single event simulations are shown 

in figures 8a and 8b for events FE6869B and FE70642, respectively. 

As expected, distributions based on the average of 250 event 

simulations reflect the features of the empirical fits for these 

events. The plots are provided in figures 9a and 9b. Note further 

from figures 10 and 11 that the experimental fluctuation values, 

fall well within the simulated V distributions thus V 

indicating that the fluctuations in the empirical data are largely, 

exp ' 

if not purely, statistical in nature. 

20 
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IV. WOUNDED NUCLEON MODEL SIMULATIONS 
OF NUCLEUS-NUCLEUS COLLISIONS 

In the wounded nucleon model2* it is assumed that the 

inelastic collision of two nuclei is an incoherent composition of 

collisions of individual nucleons and those nucleons that undergo 

at least one inelastic collision are termed "wounded". The size of 

the fragment and the number of alpha particles that are emitted in 

the collision 

tables23. The 

and unwounded 

was determined by random sampling of empirical data 

remaining mass involved was then divided into wounded 

nucleons. The wounded fraction was found by sampling 

a distribution which was a binomial approximation with an average 

value of 0.4. We used this model to simulate events FE6869B and 

FE70642 and test the azimuthal angular distributions to see how 

many possessed (1 - P ) values as large as or larger than the 

experimental values. Both events were simulated 100 times. In each 

case a relatively small fraction, -13%, of the simulated angular 

distributions had (1 - P 

x 

) values satisfying this condition. x 
V. SUMMARY AND CONCLUSIONS 

The experimental investigation of heavy nuclei collisions at 

high energies is necessary for establishing to what extent 

collective phenomena are important in nuclear collisions and to 

identify those aspects of elementary collisions that get amplified 

in the nuclear interactions. The methods presented in this paper 

enable one t o  place on a quantitative basis the decision as to 

whether distributions of particles emitted in a collision exhibit 
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nonrandom structure and to characterize the structure in terms 

of its periodic behavior. In particular, we have seen that 

discrete Fourier transform analysis is quite effective at the 

latter. We also find that the present data set supports the 

assumptions upon which our statistical analyses are based. 

One event, Fe---- >O at 55 GeV/nucleon shows an azimuthal 

distribution with a bimodal character describable in terms of a 

two-component Fourier representation. Results of computer 

simulations, based on the wounded nucleon picture of the collision, 

are consistent with the large deviation from uniformity observed in 

the distribution for this event. However, we do not observe 

evidences of non-statistical fluctuations in the pseudorapidity 

distribution for this or other events in the data set. 

In order to take on physical meaning the results of these 

statistical analyses must be combined with deterministic modelling 

based upon the mechanisms in effect during collision. In this 

regard, it is important to extend the present activity to include a 

hydrodynamical description of the collision that takes account of a 

high energy density and small nuclear radius. This  work is 

presently in progress. 
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